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1 Project Requirements

This project concerned the simulation of the quadratic interest rate model. The given project
requirements were :

1. Simulate the short term rate r(t).

2. Compute the corresponding bond price.

3. Compute the price of a European call option on the simulated bond price.

4. Compare the simulated call price with the closed form formulas given by Jamshidian, 1996.
The simulation was to be done using Monte Carlo methods. No variance reduction techniques were
required for this project. It was suggested that 1000 simulations, a maximum time horizon of 10 years
and a time step of 1 month should be used in the simulations.

The following literature was issued along with the project brief :

Jamshidian, F., Bond, futures and option evaluation in the quadratic interest rate model, Applied
Mathematical Finance, Vol. 3, 1996, pp. 93-115.

Glasserman, P., Monte Carlo Methods in Financial Engineering, Springer Verlag, July 2003, pp.
124, 132-133.

James, J., Webber, N., Interest Rate Modelling, John Wiley & Sons, 1st Edition, January 2000,
Chapter 9.3.2 pp. 229-231.

Note that the relative efficiencies of the computer algorithms developed have not been considered in the
project. Calibration of short rate model constants to match the term structure implied by observed zero
coupon bond prices has not been included.

Please see attached CD with Excel simulation files :

Rebel NM2P_CIR_MC_Simulation.xls

Rebel_NM2P_QUAD_MC_Simulation.xls

The CD also includes electronic copies of the issued literature and other related documents.
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2 Short Rate Simulation Notation

Bond prices Bond prices Bond price
P(T0,T1)="7 P(T1,T1) =1 P(T2,T2) =1
P(T0,T2)="? P(T1,T2)="7?
n;
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Figure 1 - General notation used in the short rate simulation, r;, is the simulated short rate for each time point i.

Figure 1 shows the realisation of a short rate, r(t), based on a single random path. Using the general
short rate notation shown in Figure 1, the price of a zero coupon bond with a face value of 1 which
matures at time T2, viewed at time T1, is :

12

P(T1,T2) = Exp(—Tjr(z)dz) Exp(—AtZZL};)

Similarly, the price of a zero coupon bond with a face value of 1 which matures at time T1, viewed at
time TO, is :

12

T1
m—1
P(TO,T) = Exp(— j r(tydt) = Exp(-AtY." 1)
0
For each independent random path of r(t) between TO and T2 these two bond prices will also be random.

The price at time TO of a European call option on the bond maturing at time T2, where the option expires
at time T1, can be written as follows:

C(0) =E[P(T0,T1)].MAX[ E[P(T1,T2)]- K, 0 ]

where K is the call option strike price. This is the discounted expected terminal value of the option where
the discount factor is a bond price which is random and hence the expectation needs to be taken.

This notation is used in the Monte Carlo simulation implemented in the two Excel files :
Rebel NM2P_CIR_MC_Simulation.xls

Rebel_NM2P_QUAD_MC_Simulation.xls
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3 Monte Carlo Simulation Workbooks

3.1 Cox Ingersoll Ross Model

In order to establish a general methodology for the Monte Carlo simulation applied in this project, a
simple Cox Ingersoll Ross model was first constructed as shown in the file :

Rebel NM2P_CIR_MC_Simulation.xls

The results of the simulated bond prices P(T0,T1), P(T0,T2) and P(T1,T2) were compared with the
closed form solutions provided by Hull on pages 542 and 543 (Options, Futures, and Other Derivatives,
Pearson Education, Fifth Edition, 2003).

Figure 2 below shows typical input and resulting output from the workbook calculations.

CIR Simulatio

n Parameters

integer time steps to bond maturity (gives T2 with dt)
integer time steps to option maturity {gives T1 with dt) note m < n

strike price of bond for option valuation

0.1906| European style call, price at time TO=10

0.9203| bond maturing at T1, viewed at TO {note that P_T1_T1

0.8514| bond maturing at T2, viewed at TO {note that P_T2_T2

bond maturing at T2, wiewed at T1

the expected value of rit) at t = T1, 1L.e. at time step m

1
T

see Shreve: Stochastic Calculus and Finance, B October 1997, Section 15.7, Page 172

should be an integer value, see Glasserman Page 133
should be greater than O for r(t) to be paositive at all times

1] 4.0%| initial short term interest rate

alpha 0.20| =peed of mean reversion

b 5.0%| mean reversion interest rate level

sigma 10.0%| walatility of shart term interest rate

n 36

m 24

dt 1/12 | size of the time step in years

K 0.75

num_sims 1000) number of Mante Carla simulations
CIR Simulation Output CIR Closed Form

Call option price 0.1906

P TO T1 0.9195

P TO T2 0.8303

P T1 T2 09572 0.9571

r11 simulated 4.341%

rT1 exact 4.330%

d 4.0000

Z*alpha®b - sigma® 0.0100

T 2.0000 years {option maturity)

T2 3.0000) years (bond rmaturity)

CIR simulation, see Glasserman Page 120, Equation 3.62
konte Carlo Methods in Financial Engineering, Springer “erlag, July 2003

CIR short rate dynamics @ drit) = alpha™(b - rt))"dt + sigma*r[t]ln'5*dW(t]|

CIR closed form bond price equations, see Hull Pages 542-543
Options, Futures, and Other Derivatives, Pearson Education, Fifth Edition, 2003

CTRL-ALT-F9 = recalculate whole warkbook

Figure 2 - Sample input and output from the Rebel_NM2P_CIR_MC_Simulation.xIs workbook.
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3.2 Separable Quadratic Model (with Vasicek short rate dynamics)

The general Monte Carlo simulation approach was then applied to the case of a separable, multifactor,
quadratic model as described by Jamshidian in the issued literature, Section 8, pages 104 to 106. The
assumption was made that all coefficients in the Vasicek short rate dynamics equation were constant
(i.e. not functions of time). This assumption allowed for the application of the closed form equations for
zero coupon bond prices as specified by Jamshidian on page 106. The quadratic model simulation is
contained in the workbook :

Rebel_NM2P_QUAD_MC_Simulation.xls

Figure 3 below shows typical input and output values for a 4 factor, separable quadratic model
simulation.

QUAD Simulation Parameters
x0 4.0%]| initial short term “asicek interest rate
alpha 5.0%| “asicek mean reversion interest rate level
heta 0.20 speed of Vasicek mean reversion
sigma 10.0%| volatility of Wasicek shart term interest rate
n 36| integer time steps to bond maturity (gives T2 with dt)
m 24| integer time steps to option maturity (gives T1 with dt) nate m < n
dt 1112 | size of the time step in years (should read delta t)
K 0.75] strike price of bond for option valuation
num_sims 1000] number of Monte Carlo simulations
n_guad 4| nurber of Wasicek factors in the separable gquadratic model

QUAD Simulation Qutput QUAD Closed Form

Call option price 01809 0.1801| European style call, price at time TO =10
P T0T1 0.9457 0.9455| bond maturing at T1, viewed at TO (note that P_T1_T1 =1}
P 10 T2 0.8914 0.8903| bond maturing at T2, viewed at TO (note that P_TZ_TZ = 1)
PT1T2 0.9410 0.9404| bond maturing at T2, viewed at T1
rI1 simulated 5.19%| the expected value of rit) at t =T1, 1.e. at time step m
1 exact 5.14%| see Glasserman Pages 110 and 111, Stationary Version, E[x(t)*] = [E[x(0]* + VAR[x(t)]
T 2.0000] years (option maturity, from m)
T2 3.0000] years (bond maturity from n)

“Yasicek short rate simulation, see Glasserman Pages 108-110, Equation 3.39 and 3.46
Waonte Carlo Methods in Financial Engineering, Springer “erlag, July 2003

“asicek short rate dynamics ¢ dx(t) = (alpha - beta™x(t) 7dt + sigma*dWit)
alpha, beta and sigma are all assumed to be known constants
Separable guadratic model )= 0.8 0 +oe® + .. + xn_quad(tjz]

Separable gquadratic model Wasicek) closed farm bond price equations, see Jamshidian Pages 104-105
Bond, futures and option evaluation in the guadratic interest rate model, Applied Mathematical Finance, %ol. 3, 1936

CTRL-ALT-F9 = recalculate whole warkbook

Figure 3 - Sample input and output from the Rebel_NM2P_QUAD_MC_Simulation.xls workbook.

Careful examination of the Jamshidian closed form bond price equations under the separable multifactor
quadratic model on page 108 revealed that there is a mistake in the 1996 paper. The equation for h_tau
has "... + gamma + beta)" which is incorrect, it should be "... + gamma - beta)". This makes a significant
difference to the results as h_tau is used extensively in the other linked equations. With this correction
made, the simulated Monte Carlo bond prices match the closed form Jamshidian prices as shown in
Figure 3.

Jamshidian’s closed form equation for h_tau on page 108 was compared with the James / Webber
Equation 9.68 which is the same as Jamshidian's B_t1_T2 containing h_tau. This revealed the error in
the sign of beta.
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4 Description of Functions Developed
4.1 Cox Ingersoll Ross Model
The following functions are contained in the Main module of the file:

Rebel_NM2P_CIR_MC_Simulation.xls

Function Call_on_zero_bond_CIR(r0, K, alpha, b, sigma, n, m, dt, num_sims)

This is a function for pricing of a European call option on a zero coupon bond with a face value of 1
where the bond matures at time T2 and the call option matures at time T1, T1 < T2. In the discrete time
framework, T1 is denoted by m*dt and T2 by n*dt where m < n. This implementation uses the CIR short
rate dynamics as specified in Glasserman page 120, Equation 3.62 (Monte Carlo Methods in Financial
Engineering, Springer Verlag, July 2003). The function returns the value of the call and the three zero
coupon bond prices : P_TO _T1, P_TO T2, P_T1_T2. It also returns the expected value of the short rate
attime T1, r(T1) = r,,. The simulated r(T1) can be compared to readily available closed form solutions as
can P_TO_T2 which is not needed for the option pricing but is still calculated for completeness. Note that
the closed form value of r(T1) is required for calculating the closed form value of the bond price
P_T1_T2.

Inputs:
r0 = initial short term interest rate (decimal form %)
K = strike price of the bond for option valuation (face value = 1)
alpha = speed of mean reversion in the CIR model
b = mean reversion interest rate level in the CIR model (decimal form %)
sigma = volatility of short term interest rate (decimal form %)
n = integer time steps to bond maturity (gives T2 with dt)
m = integer time steps to option maturity (gives T1 with dt) note m <n
dt = size of the time step (years)
num_sims = number of Monte Carlo simulations
CIR short rate dynamics : dr(t) = alpha*(b - r(t))*dt + sigma*r(t)>>*dW(t)
Outputs:

Column vector with the following scalar values :

Call option price =P_T0_T1 * MAX(P_T1_T2-K, 0)

P_TO_T1 = price of bond maturing at T1, viewed at TO (note that P_T1_T1 = 1)
P_TO_T2 = price of bond maturing at T2, viewed at TO (note thatP_T2 T2 = 1)
P_T1_T2 = price of bond maturing at T2, viewed at T1

Simulated value for r(T1) T1 = m*dt
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Function CIR_rtip1(alpha, b, rti, i, dt, sigma, d)

This is a function for implementation of Figure 3.5 of Glasserman, page 124 (Monte Carlo Methods in
Financial Engineering, Springer Verlag, July 2003). Note that it is used in conjunction with the function
Call_on_zero_bond_CIR(...) listed above. It simulates r(t) under CIR short rate dynamics.

This function was coded for completeness but was not used in the final implementation of the CIR Monte
Carlo simulation. It was replaced by the alternative discretisation method suggested by Glasserman on
page 133.

Inputs:
rti = simulated short term interest rate at time step i (decimal form %)
alpha = speed of mean reversion in the CIR model
b = mean reversion interest rate level in the CIR model (decimal form %)
sigma = volatility of short term interest rate (decimal form %)
dt = size of the time step (years)
i = current time step
d =4 * b * alpha / sigma?
Output:
Scalar value
rti+1 = simulated short term interest rate at time step i+1 (decimal form %)

Function P_CIR(alpha, b, rt1, sigma, t1, T2)

This function is the implementation of the CIR closed form zero coupon bond price equations from Hull
pages 542 to 543 (Options, Futures, and Other Derivatives, Fifth Edition, 2003).

Inputs:
alpha = speed of mean reversion in the CIR model
b = mean reversion interest rate level in the CIR model (decimal form %)
rt1 = closed form short term interest rate at time t1 (decimal form %)
= b + EXP(-alpha*t1) * (r0 - b)
Shreve: Stochastic Calculus and Finance, 6 Oct 1997, Section 15.7, Page 172
sigma = volatility of short term interest rate (decimal form %)
t1 = time at which bond price is determined (years)
T2 = bond maturity (years)
The face value of the zero coupon bond is assumed to be 1.
CIR short rate dynamics :  dr(t) = alpha*(b - r(t))*dt + sigma*r(t)>**dW(t)
Output:

Scalar value

P_t1_T2 = price of a zero coupon bond maturing at T2, viewed at t1
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4.2 Separable Quadratic Model (with Vasicek short rate dynamics)
The following functions are contained in the Main module of the file:

Rebel_NM2P_QUAD_MC_Simulation.xls

Function Call_on_zero_bond_QUAD(x0, K, alpha, beta, sigma, n, m, dt, num_sims, n_quad)

The function is for pricing of a European call option on a zero coupon bond where the bond matures at
time T2 and the call option matures at time T1, T1 < T2. In the discrete time framework, T1 is denoted by
m*dt and T2 by n*dt where m < n. The short rate Monte Carlo simulation is for the separable quadratic
model (with Vasicek short rate dynamics) as discussed by Jamshidian on pages 104-106 (Bond, futures
and option evaluation in the quadratic interest rate model, Applied Mathematical Finance, Vol. 3, 1996).

This implementation uses the Vasicek short rate dynamics as modified from Glasserman (Monte Carlo
Methods in Financial Engineering, Springer Verlag, July 2003) pages 108-111, Equations 3.39 and 3.46
to form factors in the quadratic model. The function returns the value of the call option and the three zero
coupon bond prices : P_TO _T1, P_TO_T2, P_T1_T2. It also returns the expected value of the short rate
at time T1, r(T1) = r,,.. The simulated r(T1) can be compared to readily available closed form solutions as
can P_TO_T2 which is not needed for the option pricing but is still calculated for completeness.

Inputs:
x0 = initial Vasicek short term interest rate (decimal form %)
K = strike price of the bond for option valuation (face value = 1)
alpha = Vasicek mean reversion interest rate level (decimal form %)
beta = speed of mean reversion in the Vasicek model
sigma = volatility of Vasicek short term interest rate (decimal form %)
n = integer time steps to bond maturity (gives T2 with dt)
m = integer time steps to option maturity (gives T1 with dt) note m <n
dt = size of the time step (years)
num_sims = number of Monte Carlo simulations
n_quad = number of Vasicek factors in the separable quadratic model
Vasicek short rate dynamics :  dxi(t) = ( alpha - beta*x(t) )*dt + sigma*dW(t)
Separable quadratic model :  r(t) = 0.5%[x4(t)* + X2(t)* + ... + Xn_quaa(t)’]
Outputs:

Column vector with the following scalar values :

Call option price =P_T0_T1 * MAX(P_T1_T2-K, 0)

P_TO_T1 = price of bond maturing at T1, viewed at TO (note thatP_T1_T1 = 1)
P_TO_T2 = price of bond maturing at T2, viewed at TO (note thatP_T2 T2 = 1)
P_T1_T2 = price of bond maturing at T2, viewed at T1

Simulated value for r(T1)

ISMA Centre NM2 Project Gerhard Rebel Page 8



Function P_QUAD(alpha, beta, sigma, n_quad, x0, t1, T2)

This function is an implementation of the separable quadratic multifactor model closed form bond price
equations given by Jamshidian (Bond, futures and option evaluation in the quadratic interest rate model,
Applied Mathematical Finance, Vol. 3, 1996, pp. 93-115). See in particular Section 8, pages 104 and
106. Note that alpha, beta and sigma are all assumed to be known constants and x0 is common for all
Xi.

Inputs:
alpha = Vasicek mean reversion interest rate level (decimal form %)
beta = speed of mean reversion in the Vasicek model
sigma = volatility of Vasicek short term interest rate (decimal form %)
n_quad = number of Vasicek factors in the separable quadratic model
x0 = initial Vasicek short term interest rate (decimal form %)
t1 = time at which bond price is determined (years)
T2 = bond maturity (years)
Vasicek short rate dynamics : dxi(t) = ( alpha - beta*x(t) )*dt + sigma*dW(t)
Separable quadratic model : r(t) = 0.5*[x4(t)* + Xa(t)* + ... + Xn_quaa(t)’]
Output:

Scalar value

P_t1_T2 = price of a zero coupon bond maturing at T2, viewed at t1

5 VBA Program Module Listings
The following pages contain the two Main VBA modules with the functions described in the previous

section. The listing for Rebel_NM2P_CIR_MC_Simulation.xls is given first followed by the code for
Rebel_NM2P_QUAD_MC_Simulation.xls.
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Rebel NM2P CIR MC Simulation.xls
Gerhard Rebel

Option Explicit

Pricing of a call on a zero coupon bond where the bond matures at time T2 and
the call option matures at time T1, Tl < T2. In the discrete framework, Tl is
denoted by m*dt and T2 by n*dt where m < n.

This implementation uses the CIR short rate dynamics as specified in
Glasserman Page 120, Equation 3.62

Monte Carlo Methods in Financial Engineering, Springer Verlag, July 2003

The function returns the value of the call and the three zero coupon bond
prices : P TO Tl1, P TO T2, P Tl T2

It also returns the expected value of the short rate at time T1l, r(Tl) = r(m)

Function Call on zero bond CIR(r0O, K, alpha, b, sigma, n, m, dt, num sims)

Dim i As Integer ' loop counter, time steps

Dim j As Integer ' loop counter, Monte Carlo simulations

Dim i count ' loop counter, for simulation of r(t), see Glasserman Page 133

Dim P_TO_T1 sum, P_TO_T2 sum, P_T1 T2 sum ' summation of all the simulated bond prices
Dim r val Tl sum ' summation of all the simulated r(m) = r(Tl) values

Dim exp TO_T1, exp Tl T2 ' note that exp TO T2 = exp TO Tl + exp Tl T2

Dim P_TO T1, P _TO T2, P Tl T2 ' expected values for all bond price simulations

Dim r val Tl ' expected value for all the r(m) = r(Tl) simulations

Dim Z ' std normal random variable

Dim d ' see Glasserman Page 133

' check that m < n i.e. Tl < T2

If m >= n Then

m=n -1

MsgBox ("Note: m has been adjusted automatically ton - 1 =" & m)
End If
ReDim r val(0 To n - 1) ' simulated short rate values
ReDim Output array (0 To 4) ' output data array

' Initialise the simulation variables

r val Tl sum = 0

ISMA Centre NM2 Project Gerhard Rebel
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P TO Tl sum = 0

P TO T2 sum = 0

P Tl T2 sum

It
o

d = Int(4 * b * alpha / sigma " 2) ' See Glasserman Page 133

Check relationship between alpha b and sigma
If ((d - (4 * b * alpha / sigma ~ 2)) <> 0) Then MsgBox ("Note: d is not an integer")
If ((2 * alpha * b - sigma "~ 2) <= 0) Then MsgBox ("Note: 2 * alpha * b - sigma ”~ 2 should be greater than zero")

' Run the Monte Carlo simulation, J are the individual simulations

For j = 1 To num sims
r val(0) = r0
exp TO_T1 = rO ' because the loop below starts at i = 1 and we need the sum to include values from i = 0
exp T1 T2 = 0

i are the time steps for one simulation path

For i 1 Ton - 1 "' we only need the to calculate up to the second last time point

Simulation of r(t), see Glasserman Page 133
Monte Carlo Methods in Financial Engineering, Springer Verlag, July 2003

r val(i) = 0
For i count 1 To d
Z = Application.NormSInv (Rnd) ' std normal random variable with mean = 0 and std dev =1
r val(i) = r val(i) + _
(Exp(-0.5 * alpha * dt) * (r val(i - 1) / d) ~ 0.5 + sigma / 2 * (1 / alpha * (1 - Exp(-alpha * dt))) ~ 0.5 * Z) ~ 2

Next i count

' Alternative Simulation of r(t), see Figure 3.5 of Glasserman, Page 124

Monte Carlo Methods in Financial Engineering, Springer Verlag, July 2003

r val(i) = CIR rtipl(alpha, b, r val(i - 1), i, dt, sigma, d)

If i < m Then
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exp TO Tl = exp TO Tl + r val(i) ' summation of all the short rates from i = 0 to m-1

Else
exp Tl T2 = exp Tl T2 + r val(i) ' summation of all the short rates from i = m up to n-1

End If
Next i
r val Tl sum = r val Tl sum + r val(m) ' keep track of the value of r val(m) = r(T1l)
P TO Tl sum = P TO Tl sum + Exp(-dt * exp TO T1l) ' summation of all the simulated P_TO_T1 bond prices
P TO T2 sum = P_TO T2 sum + Exp(-dt * (exp TO Tl + exp Tl T2)) ' summation of all the simulated P_TO T2 bond prices
P T1 T2 sum = P Tl T2 sum + Exp(-dt * exp Tl T2) ' summation of all the simulated P_T1 T2 bond prices

Next j

' Calculate the bond prices and the short rate at T1

r val Tl = r val Tl sum / num sims ' expected value for all simulations, r(T1)
P TO T1 = P_TO Tl sum / num sims ' expected value for all simulations, bond maturing T1, viewed at TO
P TO T2 = P TO T2 sum / num sims ' expected value for all simulations, bond maturing T2, viewed at TO

' P_TO_T2 is not needed for the option price calculation
P Tl T2 = P_T1 T2 sum / num sims ' expected value for all simulations, bond maturing T2, viewed at T1

' Calculate the call option price and create the output array

Output array(0) = P TO Tl * Application.Max (P Tl T2 - K, 0) ' discounted terminal value
Output array(l) = P TO T1
Output_array(2) = P _TO T2
Output_array(3) = P_T1 T2
Output array(4) = r val Tl

Call on zero bond CIR = Application.Transpose (Output array)

End Function ' Call on zero bond CIR(...)

' Implementation of Figure 3.5 of Glasserman, Page 124

Simulation of r(t) under CIR short rate dynamics
Monte Carlo Methods in Financial Engineering, Springer Verlag, July 2003

Function CIR rtipl (alpha, b, rti, i, dt, sigma, d)
Dim n, Z, X, c¢, lamda

' Note that d = 4 * b * alpha / sigma * 2
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If d > 1 Then
c = sigma ~ 2 * (1 - Exp(-alpha * dt)) / (4 * alpha)

lamda = rti * Exp(-alpha * dt) / c

N
|

X

CIR rtipl = ¢ * ((Z + lamda ~ 0.5) "~ 2 + X)
ElseIf d <= 1 Then
c = sigma ~ 2 * (1 - Exp(-alpha * dt)) / (4 * alpha)

lamda = rti * Exp(-alpha * dt) / c

= Application.NormSInv (Rnd) ' std normal random variable with mean = 0 and std dev = 1

n = Application.Poisson(i, lamda / 2, False) ' returns the Poisson probability mass function,

X = Application.ChiInv(Rnd, d + 2 * n) ' returns the inverse of the one-tailed probability of the chi-squared distribution

CIR rtipl = ¢ * X
Else

CIR rtipl = rti
End If

End Function ' CIR rtipl(...)

Implementation of CIR closed form bond price equations
' See Hull Page 542-543
' Options, Futures, and Other Derivatives, Fifth Edition 2003

Function P CIR(alpha, b, rtl, sigma, tl, T2)

Dim gamma, B tl T2, A tl T2

gamma = (alpha ~ 2 + 2 * sigma ~ 2) ~ 0.5
B tl T2 = 2 * (Exp(gamma * (T2 - tl)) - 1) / ((gamma + alpha) * (Exp(gamma *
A tl T2 = ((2 * gamma * Exp((alpha + gamma) * (T2 - tl) / 2)) / _

((gamma + alpha) * (Exp(gamma * (T2 - tl)) - 1) + 2 * gamma)) "

P CIR = A tl T2 * Exp(-B tl T2 * rtl)

End Function ' P_CIR(...)

ISMA Centre NM2 Project
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Application.ChiInv(Rnd, d - 1) ' returns the inverse of the one-tailed probability of the chi-squared distribution

(T2 - t1)) - 1) + 2 * gamma)

(2 * alpha * b / sigma
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' Rebel NM2P QUAD MC Simulation.xls
' Gerhard Rebel

Option Explicit

' Pricing of a call on a zero coupon bond where the bond matures at time T2 and

' the call option matures at time T1l, Tl < T2. In the discrete framework, Tl is

' denoted by m*dt and T2 by n*dt where m < n.

' Separable quadratic model (with Vasicek short rate dynamics) see Jamshidian Pages 104-106
' Bond, futures and option evaluation in the quadratic interest rate model,

' Applied Mathematical Finance, Vol. 3, 1996

This implementation uses the Vasicek short rate dynamics as modified from

' Glasserman Pages 108-111, Equations 3.39 and 3.46 to form factors in the

' quadratic model

' Monte Carlo Methods in Financial Engineering, Springer Verlag, July 2003

' The function returns the value of the call and the three zero coupon bond
prices : P_TO T1l, P_TO T2, P Tl T2

' It also returns the expected value of the short rate at time T1, r(Tl) = r(m)

Function Call on zero bond QUAD(x0, K, alpha, beta, sigma, n, m, dt, num sims, n_quad)

Dim i As Integer ' loop counter for time steps

Dim j As Integer ' loop counter for Monte Carlo simulations

Dim n_quad _count ' loop counter for factors in the separable quadratic model

Dim P_TO Tl sum, P_TO T2 sum, P_Tl T2 sum ' summation of all the simulated bond prices
Dim r val Tl sum ' summation of all the simulated short rate r(m) = r(Tl) values

Dim exp TO_T1, exp Tl T2 ' note that exp TO T2 = exp TO Tl + exp Tl T2

Dim P_TO T1, P _TO T2, P Tl T2 ' expected values for all bond price simulations

Dim r_val T1 ' expected value for all the short rate r(m) = r(Tl) simulations

Dim Z ' std normal random variable

' check that m < n i.e. Tl < T2

If m >= n Then

m=n -1
MsgBox ("Note: m has been adjusted automatically ton - 1 =" & m)
End If
ReDim r val(0 To n - 1) ' simulated quadratic short rate values
ReDim x val(0 To n - 1, 1 To n_quad) ' simulated Vasicek short rate values used to make up r_val
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ReDim Output array(0 To 4) ' output data array
' Initialise the simulation variables
r val Tl sum = 0

P TO_T1 sum = 0

I
o

P TO_T2 sum =

It
o

P T1 T2 sum
' Run the Monte Carlo simulation, J are the individual simulations
For j = 1 To num sims

r val(0) = 0 ' initial value for the loop

' Determine the value of r(0) given x0 and the number of factors, n_quad

For n_quad count = 1 To n_guad
x val (0, n_quad count) = x0 ' given constant value
r val(0) = r val(0) + 0.5 * x val(0, n quad count) "~ 2 ' see Jamshidian Page 104, Section 8

Next n_quad count

exp TO_T1 r val(0) ' because the loop below starts at i = 1 and we need the sum to include values from i = 0

exp Tl T2 0 ' we will start adding to this from i = m
' 1 are the time steps for one simulation path

For i = 1 Ton - 1 ' we only need the to calculate up to the second last time point

' Simulation of r(t), see Glasserman Page 110, Equation 3.46 for the Vasicek short rate dynamics
' Monte Carlo Methods in Financial Engineering, Springer Verlag, July 2003

r val(i) = 0 ' initial value for the loop
For n_quad count = 1 To n_quad ' i.e. factors in the separable quadratic model
Z = Application.NormSInv(Rnd) ' std normal random variable with mean = 0 and std dev =1
x val(i, n quad count) = Exp(-beta * dt) * x val(i - 1, n quad count) +
alpha / beta * (1 - Exp(-beta * dt)) + _
sigma * (1 / (2 * beta) * (1 - Exp(-2 * beta * dt))) ~ 0.5 * 2
r val(i) = r val(i) + 0.5 * x val(i, n quad count) "~ 2 ' see Jamshidian Page 104, Section 8

Next n_quad count
If i < m Then

exp TO Tl = exp TO Tl + r val(i) ' summation of all the short rates from i = 0 to m-1
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Else

exp Tl T2 = exp Tl T2 + r val(i) ' summation of all the short rates from i = m up to n-1
End If
Next i
r val Tl sum = r val Tl sum + r val(m) ' keep track of the value of r val(m) = r(T1l)
P TO Tl sum = P TO Tl sum + Exp(-dt * exp TO T1) ' summation of all the simulated P_TO T1 bond prices
P TO T2 sum = P_TO T2 sum + Exp(-dt * (exp TO Tl + exp Tl T2)) ' summation of all the simulated P_TO T2 bond prices
P T1 T2 sum = P Tl T2 sum + Exp(-dt * exp Tl T2) ' summation of all the simulated P_T1 T2 bond prices

Next J

' Calculate the expected bond prices and the expected short rate at T1

r val Tl = r val Tl sum / num sims ' expected value for all simulations, r(T1l) = r(m)
P TO Tl = P TO Tl sum / num sims ' expected value for all simulations, bond maturing T1l, viewed at TO
P TO T2 = P_TO T2 sum / num sims ' expected value for all simulations, bond maturing T2, viewed at TO

' P TO T2 is not needed for the option price calculation
P T1 T2 = P_ Tl T2 sum / num sims ' expected value for all simulations, bond maturing T2, viewed at T1

' Calculate the call option price and create the output array

Output_array(0) = P _TO Tl * Application.Max(P Tl T2 - K, 0) ' discounted terminal value of call option
Output array(l) = P TO T1 ' note that P TO Tl and P Tl T2 are already expected values
Output array(2) = P _TO T2
Output_array(3) = P Tl T2
Output_array(4) = r_val Tl
Call on_zero bond QUAD = Application.Transpose (Output_array) ' create a column vector for output to XLS sheet
End Function ' Call on zero bond CIR(...)

Implementation of the separable quadratic model bond price equations

' See Jamshidian, Bond, futures and option evaluation in the quadratic interest
' rate model, Applied Mathematical Finance, Vol. 3, 1996, pp. 93-115.

' See in particular, Section 8, Pages 104 and 106

' Note that alpha, beta and sigma are all assumed to be known constants

' x0 is common for all xi

' n_quad is the number of factors in the separable quadratic model

Function P QUAD (alpha, beta, sigma, n quad, x0, tl, T2)
Dim gamma, tau, h _tau, B_tl T2, small B tl T2, small C tl T2, x tl, x tl sqrd
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gamma = (sigma ~ 2 + beta ~ 2) ~ 0.5
tau = T2 - tl

L R R R

' Note that the Jamshidian equation for h tau has "... + gamma + beta)" which is incorrect,

' it should be "... + gamma - beta)"

' Compare with James / Webber, Equation 9.68 which is Jamshidian's B_tl T2 containing h tau

LB Rk kb kb b b b b b b bk b b b b b b b b b b b b b b b b b b bk b b b b b b b b b b b b b b b b b Ik Ik 2k I Ok Ok Ik I E I I Ik b b b b b b i

h tau = 1 / ((gamma + beta) * Exp(2 * gamma * tau) + gamma - beta)

B tl T2 = h_tau * (Exp(2 * gamma * tau) - 1)

small B tl T2 = alpha * h tau * (Exp(gamma * tau) - 1) ~ 2 / gamma

small C t1 T2 = n quad * (0.5 * ((alpha ~ 2 / gamma ~ 2) - (sigma ~ 2 / (gamma - beta))) * tau

- 0.5 * Log(2 * gamma * h_ tau) _
+ alpha ~ 2 / gamma ~ 3 / (gamma + beta) *

(h_ tau * (2 * beta * (gamma + beta) * Exp(ggmma * tau) + sigma ~ 2 - beta - beta - gamma / 2))
' Note that x tl and x tl sqaured are expected values, E[], used for the closed form bond price calculations
' These are based on the E[] and VAR[] of the Vasicek short rate process given by Glasserman and others
' E[x(t)"2] = (E[x(t)])"2 + VAR[x(t)] is used to determine x tl sqaured, based on x tl
' dxi(t) = ( alpha - beta*xi(t) )*dt + sigma*dwW(t)
x_tl = x0 * Exp(-beta * tl) + alpha / beta * (1 - Exp(-beta * tl)) ' see Glasserman Page 110, bottom of page for E[x(t)]
x tl sqrd = (x_tl) ~ 2 + sigma ~ 2 / (2 * beta) * (1 - Exp(-2 * beta * tl)) ' see Glasserman Page 111,
P QUAD = Exp(-n_quad * (0.5 * B tl T2 * x tl sqrd + small B tl T2 * x tl) - small C tl T2) Jamshidian Page 104,
End Function ' P_QUAD(...)

6 Project Brief and Issued Literature

The attached pages contain the project brief, as issued, along with the referenced literature.
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Quadratic Interest Rate Model simulation

Jamshidian Bond, futures and option evaluation in the quadratic interest rate model
Applied Mathematical Finance 1996 pp 93-115

Glasserman book Monte Carlo Methods in Financial Engineering
pp 124, 132-133, and other
ISMA Centre just bought a copy for use by students

James / Webber book Interest Rate Modelling Ch 9.3.2 pp 229-231

Simulate the short term rate r

Compute the corresponding bond price

Compute the price of a European call option on the simulated bond price

Compare the simulated call price with the closed form formulas given by Jamshidian

assigned to student: Ci W
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Bond, futures and option evaluation in the
quadratic interest rate model
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Sakura Global Capital, 42 New Broad Sireet, London EC2M 1JX, UK
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This paper develops the quadratic interest-rate model of Beaglehole and Tenney in detail. For the quadratic
model as well as the multifactor Cox—Ingersoll~Ross square-root model, explicit pricing formulae in terms of
one-dimensional integrals of elementary functions are given for bond options, bond exchange options, caps,
options on bond futures and forward contracts, and futures delivery options. For the quadratic model, certain
forward and transport equations are found that explicitly determine the dynamics of the term structure in
terms of initial yield and volatility curves. These option-pricing formulae are thus determined in term of
the initial curves. Some shortcomings of the model are identified. New formulae for some distributions and

their truncated moments are also derived.

Keywords: principal value integral, noncentral chi-squared distribution, forward risk adjustment, forward and
transport equations, yield curve calibration

1. Introduction

The multifactor quadratic interest-rate model was introduced by Beaglehole and Tenney (1991). It
was further developed in El Karoui ez al. (1992). This paper derives a more complete list of its
properties, especially for the special case of ‘multifactor separable’ quadratic models, i.e. models
which are essentially a sum of independent one-factor models. The new results include analytical
calibration of the yield curve by algebraic formulae, ‘transport equations’ that express the coeffi-
cients of forward interest rates at future dates as algebraic functions of their initial value, formulae
for the distribution of interest rates, pricing formulae for futures, zero-coupon bond options and
other European derivatives in terms of one-dimensional integrals of elementary functions and the
initial term structure and, for the constant coefficient case, algebraic formulae for prices of zero-
coupon bonds. We also point out some anomalies of the quadratic interest-rate model.

In the quadratic interest-rate model, the spot interest rate is a quadratic function of a (multi-
variate) Gaussian state variable. For the constant coefficient case, the quadratic model is closely
related to affine yield models studied by Duffie and Kan (1992) and its special cases such as the one-
factor square-root model of Cox et al. (1981, 1985) and their multifactor generalization in Chen
and Scott (1992) and Longstaff and Schwartz (1992). They are linked by similar formulae for zero-
coupon bonds deduced from Riccati equations, and the fact that interest rates in both classes of
models are chi-squared distributed.

Here we are primarily interested in the case of time-varying coefficients, so that the model can be
calibrated to an initial yield curve. Such quadratic models resemble the ‘simple square-root models’
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introduced in Jamshidian (1995). But, as we shall see, there are in general important differences
which argue in favour of simple square-root models. An interesting connection between the two
classes of model has been established by Maghsoodi (1996), who shows that certain multifactor quad-
ratic models are equivalent to one-factor simple square-root models with ‘integer dimension’.

The paper is organized as follows. Section 2 provides formulae for the distribution function and
truncated moments of linear combinations of independent non-central chi-squared distributions as
one-dimensional integrals of elementary functions. These formulae are useful for computational
purposes even in the single-factor case. The derivation uses known formulae for the Fourier
transforms of the Heaviside function and its derivative as generalized functions. This technique
more generally furnishes the distribution function and truncated moments of any distribution as
the integral of an elementary function, provided the characteristic function of the distribution has
an elementary form. These results are of independent interest.

Section 3 presents the basic properties of forward risk adjustment and discusses its origins. The
usefulness of this concept for deriving option-pricing formulae is well known. We will use it here
also to derive the transport equations and other key structural formulae, such as the zeroth order
coefficient of bond prices (or forward rates).

Section 4 applies the results of Sections 2 and 3 to derive various option-pricing formulae which
are applicable to multifactor models with (generalized) non-central chi-squared distributed interest
rates. These include separable multifactor Cox~Ingersoll-Ross (CIR) and quadratic models. The
pricing formulae are for zero-coupon bond options, options to exchange two (zero-coupon) bonds,
options on bond forward contracts, caps, options on bond futures and the delivery option in bond
futures. Again, they are all expressed explicitly as one-dimensional integrals of elementary
functions. These results are applied to the multifactor CIR model in Section 5.

After some preliminaries in Section 6, Section 7 discusses the general multifactor quadratic
interest-rate model, and presents the system of ordinary differential equations (ODE) that zero-
coupon bond prices satisfy. Section 8 presents detailed properties of separable multifactor
quadratic models, including distributional characteristics and transport and forward equations.
This section also provides bond- and futures-pricing formulae for the constant coefficient case.
An examination of these formulae reveals that anomalous behaviour results when the underlying
Gaussian state variable lies within a certain range, i.e. in the one-factor case, long-term rates will be
negatively correlated with short-term rates at these states. This and other undesirable features of the
quadratic model stem from the fact that its spot interest rate fails to be a Markov (diffusion) process.

Section 9 applies the results of Section 8 to the problem of fitting an initial yield curve (and if
desired also a volatility curve). Further relevant structural formulae of the quadratic model are
recorded there. The calibration is entirely analytic in the main case of interest, and in all other
cases at most a single ODE needs to be solved. Section 10 concludes that simple square-root
models are better models than quadratic interest-rate models. An appendix contains proofs of
Theorems 2.1, 7.1 and 7.2, and some extensions.

2. Linear combinations of independent non-central chi-squared
distributions

In the multifactor models studied in this paper, interest rates turn out to be distributed as a linear
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combination of independent non-central chi-squared random variables, and bond prices‘ wil} be
exponentials of such distributions. In this section, we derive some formulae for these dlstrlbut{ons
and their truncated first moment in terms of a one-dimensional integral of elementary functions
which will later furnish option-pricing formulae.

If Y is a random variable such that ¥ = o + BiX, + ...+ B, X, for some sca}ars a, B; and some
independent random variables X;, each non-centrally chi-squared distrznbuted with v; > 0 degrees of
freedom and a non-centrality parameter A; > 0, then we write Y ~ x2(, A, 8,@) (v = (v, -, Vn)s
etc.).! From the formula for the moment generating function of X;, we have

\Iln('/1 )‘7ﬁ7 a) = E[e_yl = exp ("" i(%yi lOg(l + 2ﬂl) + ﬂr’\:/(l + Zﬂl)) - a) (ﬂt ‘_% )
=1

Note that E[Y] = a+ D6 + ;). The characteristic function of Y admits a similgr algebr.aic
formula. Inverting it by the inverse Fourier transform, we obtain a formula for the.densuy function
as an integral of an elementary function. It is interesting that the distribution function of Y can also

be represented as a one-dimensional integral:

1 1(® . d¢
Blnnf) =g+ 3] w5028, 0)sin (&~ B0 69) 7

where v, ), B, are n-dimensional vectors, and y is a scalar, and

(v 2 P
6, (v,A7) = Z —2-arctan( ) + e

i=1

Another integral of interest is®
e v 2 _ d¢
Gy =L [ [t -0 (5.2,26%80) cos(er - 8,4 A0

The following result, proved in the appendix, summarizes the formulae relevant to European
option evaluation.

Theorem 2.1: If ¥ ~ x2(v, A\, B,a), ¥’ ~ (v, \, 8',@'), and y € R, the following hold:

prob [Y < y] = XA(y — &, A, B)
E[(Y - y)4] = L(E[Y] =) + Ca(y — v, M, B)

E[(e_Y - e_y)+] = E[e—Y]szl(y - Vr'l__:_zﬁxl—f_z—ﬂ) - e_erzl(y -y, )‘)ﬂ)

! Throughout the paper we use vector notation where the product and division of two vectors, like their sum and difference,
is defined pointwise (also, x, = max(x,0)). ) .

2 For numerical integration of these two integrals, it is useful to note that the (limiting) values of the two mtegra.nds até=0
are respectively y~G(v + A) and Bv+20)+ (y-Blv+ A))%/2. Also note that both integrands are absolutely integrable.
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El(e™ —eV),] = Ele V]2 (a’ —a Vﬁ%)
S (a’ - u,T_T_Az—[i,,f—;z%,)
Efmin(e™",e™"")] = Efe™"]x} (a —a VYTJ%FIE:—ZZ )
+Ele™xd (a' - ‘4%2,@1%—%7)

The first formula of the theorem gives the previously stated distribution of Y. The second and the
third equations relate respectively to options on yields and options on zero-coupon bonds. The
fourth and fifth formulae correspond more generally to an option to exchange two zero-coupon
bonds, and are useful for the delivery option in bond futures contracts.

3. Forward risk adjustment

As mentioned in the introduction, forward risk adjustment will be used both to derive option prices
and some of the structural equations of the quadratic model. To our knowledge, the concept was
first introduced in Jamshidian (1987), where three of its basic properties were established for the
general one-factor diffusion model, and applied to the Cox~Ingersoll-Ross square-root model and
the Gaussian model with time-varying drift term. Evidently independently, El Karoui and Rochet
(1989) presented and studied this concept. Reportedly, Geman (1989) also arrived at this concept.
Some of the ideas of forward risk adjustment date back to Merton (1973), where variables were
changed to forward prices to simplify the fundamentai differential equation.

In Jamshidian (1987), as was customary then (e.g. as with risk-neutrality adjustment), instead of
ch:«}nging the measure, more old-fashionedly, but equivalently, the drift of processes was changed.
Using Ito’s division rule, it was shown that (i) the T-maturity forward-risk-adjusted drift is
obtained by adding to the risk-neutral drift the volatility of the T-maturity zero-coupon bond times
the process volatility; (ii) price of a contingent claim is the discount factor times the expected payoff
of the forward-risk-adjusted process; and (iii) the forward interest rate is the expected value of
forward-risk-adjusted spot interest rate.® In the more modern language of change of measure, these
properties can be restated as (i) the forward-risk-adjusted Brownian motion differs from the risk-
neutral Brownian motion by the zero-coupon bond price volatility; (ii) forward asset prices are
martingales in the forward-risk-adjusted measure; and (iii) forward interest rates are martingales
in the forward-risk-adjusted measure.

3 As noted on the previous page these properties show ‘discount bond price volatility plays the role of a market price of risk ...
fcrrward rates . .. turn out to be expectation of the forward risk-adjusted interest rate process ... prices of contingent are
discounted expected payoff values with respect to this [forward-risk-adjusted] process . .. {forward risk adjustment] clarifies
the relation between the one-factor term structure model and Merton’s option model of 1973 which is essentially in terms of
forward prices.’
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Forward risk adjustment can be thought of as taking the zero-coupon bond as the ‘numeraire’.
Of the three basic properties, the first two are essentially shared by any change of numeraire. But,
the third is specific to forward risk adjustment. Further properties specific to forward risk adjust-
ment were found by El Karoui e? al. (1992) and applied to the quadratic model.

Let r(r) denote the spot interest rate, and assume that the model is arbitrage free so that T-
maturity zero-coupon bond prices and forward interest rates are given respectively by

P =Bfoo (- [ roa)]  @<es
rr(0) = ~810g (Pr)(0)/0T

g [rmyens (- [ 1)85) |20

() = @)

where E,[-] denotes the risk-neutral expectation operator conditioned on time t. Assume further
that Pr(¢) are Ito processes in the risk-neutral measure, so that

dPr(0)/Pr(t) = r()dt — o7 (1) dz(?)

(1) = (@21(1), -,z (1))
where z(¢) is a standard n-dimensional Brownian motion in the risk-neutral measure, and (row
vector) o(t) is the (in general stochastic) bond-price volatility (o,(t) = 0)*. Then, for each
T > 0, by Girsanov’s theorem, there is an equivalent measure under which the process

i

() =z(0) + J; or(s)'ds (dz” (¢) = dz(t) + o (1)'d?)

is a Brownian motion on [0, T].> Denoting its conditional expectation operator by ET [+], using
Ito’s division rule or Girsanov’s formula, for any Ito process X () one easily obtains®

T
EF(T = Eexp( - [ ) a5 ) X(T/Pr) 6

4So, if A(f) is the market price of risk, then w(t) = z(t) + o Als) ds is a Brownian motion in the actual measure.
5 Its Radon-Nikodym derivative with respect to the risk-neutral measure is the random variable

exp- [} diorr 4220 &) = exp- [0 a0) /P10
®Indeed, integrating the equation dP,/P, = r df — g,dz gives

exp- ||t o, dz(u))) - exp(— [/ du) PATY/PA) (1< T <9)
Hence, by Girsanov's formula, we have more generally than (3.1),

T
E/[X(T)] = E[X(T) ﬂp(—] () du) PT)/P{) (1< T <)
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In particular, we have r7(¢) = ET {r(T)], while for bond prices we obtain,

P(1)=Pr(0E[|P(T)] (1<T<s) (3.2)

4. Option-pricing formulae for x>-distributed interest-rate models

Combining the results of the previous two sections, we obtain option-pricing formulae for models
in which interest rates are distributed as a linear combination of independent chi-squared distribu-
tions. Equations (3.1) and (3.2) used in conjunction with Theorem 2.1 lead, without need for any
further calculation, to pricing formulae for (i) zero-coupon bond options (and hence caps and
floors); (ii) caplets on the spot rate r(z) (which is related to American bond option valuation
(see Jamshidian (1995)); (iii) options to exchange two zero-coupon bonds; (iv) zero-coupon bond
futures; (v) options on zero-coupon bond futures; (vi) options on a zero-coupon bond forward
contract; and (vii) the delivery (quality) option in a futures contract to deliver the cheapest of
two (weighted) zero-coupon bonds. Below, if X(¢) is a process such that conditioned on time ¢
the distribution of X(T) in the risk-neutral (respectively forward-risk-adjusted) measure belongs
to x,z,(u,/\,ﬂ,a), we write,

X(T), ~ Xz, )\, B)  (tesp. X(T) ~ x2(», A\ a, B))

Theorem 4.1: Let T denote an option expiration, K > 0 a strike price or rate, and ‘s-bond’ denote
the s-maturity zero-coupon bond, s > T.

(i) Suppose —log(P,(T))|7 ~ X,z,(ur’s(t), Ars(1), Brs(t),ar(1)) for some (& ,-measurable ran-
dom variables) vr (1), Ars(2), Br (1), ars(2). Then the price of a call option on the s-bond is

E, [exp(— LT H(u) du) (P(T) - K)+]

=Ps(t)x§( ~ ar(0) ~ log Kiwp,(n), = _Frs0) )

14 287,(1)" 1 + 287 4(1)
— Pr(Kx3(~or (1) — log K;vr (1), Ar5(6), Br.(f)

(i) Suppose r(T)I7" ~ xa(vr(1), Ar(¢), Br(¢), ar (1) (for some vr(f), Ar(f), Br(2), ar(s)). Then
rr(2) = ar(t) + ZBT(1)(Vr (1) + Nir(1)), and the price of a caplet on the spot interest rate is

T
E, [cxp(— J‘ r(u) du) (r(T) - K)+] = Pr()[3(rr(1) - K)
+ Ca(K = ar(8);vr(0), Ar(6), Br(1))]

Giii) Suppose ~log(P{(T)IT ~ xZ(vr(1), Ar(1), Bro(t), ar,(1)), and similarly for —log(Py(T)).
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Then, the price of the exchange option to put x' s'-bonds and call  s-bonds is

E, [exp (— J,T r(u) du) (kP(T) — &' P (T)) 4

A B ..v(t) -3 (I)
= =Rl (a” (01085 —ar, (70,7 2Tﬂ(;),s(r) S 0] )

A — Brg
R, 004 or ) + 10w 5 = a0 gy PO O

(iv) Suppose —log(Py (T)/Py(T)I; ~ Xa(v7ss(t): M550 (0), Br s (1), a7 5,0(1)). Then the price of
a call option on the s-delivery forward contract on the s'bond (t < T <s<'s Y is’

E, [exp (— J ") du) (PA(T) - KPS(T))+]

i

‘P(’)E[(P - «).]
Ares()  Brss(0) )

= 2{ _ ' -_ M '
= Ps’(')Xn( QAT 55 (t) lOg K7 VTss (t)a 1+ 2ﬂT,s,s'(t) X ¥ 2ﬂT,s,:’(t)

- P (I)sz(—al'ss’(t) - lOgK' VT ss ’(t) ’\T.s.\"(t) ﬂTs.s’(t))

(v) Suppose —log(P,-(s))|, ~ x,,(us, (t) Asr (1), Bs g+ (s (1)). Then the price of an s-delivery
futures contract on the ¢*-bond is®

Fs,l‘(t) = EI[PI‘(S)] = \I’n("s,l‘(l)’)‘:,l'(t)»ﬁ:,l‘(l)1as,l‘('))
(vi) Let F() be an Ito process such that —log(F(T)) |7~ X3 (wr (), A (8), Br(1),ar(1)). Then,
B [exp(~ [[ 1) @) ((2) ~ K0, ] = PrOW (0. (0,810, 05(0)

A
X Xn (_O‘T(') —logK; vr(t),y7 ;gr)(’) 1 f;gz(’))

— Kxa(—ar(0) — log K; vr(0), Ar(8), Br(1))]

" Evidently, the option to exchange two bonds as in part (iii) is equivalent to an option on a bond forward contract, as in
part (iv). We thus have two different formulae for this option under two slightly different assumptions. In applications below
both assumptions are met, providing consequently two different but equivalent formulae for this option.

8 We can show that in general

dFr,(u) dPr(“)D] (t<T<s)

T
Fra() = E[PAD] = P((x))E’[° "( Jy eon Fra(@) " Pr()
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In particu]ar if _log(Fs,t‘ (T)) IrT ~ X_IZI(VT,:,I‘ (t)a AT,.v,t' (l), HT,J,I‘ (t)v Qr st (’))a then the price of
a European call option on thezs-dehvery futures on 1*-bond is given by the above formula.
(vii) Suppose —log(P-(s))l: ~ xa(vs(), As(2), B+ (1), @, (#)), and similarly for -log(Py(s)).
Then the price of the futures contract to optionally deliver either £* #*-bonds or £’ /-bonds
is

Et[min(K"Pl'(s)!K‘,PI'(S))]

= K"Fo ()X (a (1) +log==; — & (1 %y(1)i7 +A2,[§,). - ’B"{' 5:)2; ﬂ,,(.;)(o)

(0 (ax,,'(r) #1085~ 04, (0 )y aes, 2 O ”’(’;’)"’)

5. Example: separable multifactor CIR square-root model

In this model, r(f) = x,(¢) + ... + x,(¢), where x,(¢) follow independent diffusion processes: * -
dx; = k(6 — x;) dt + o3v/x; dz;  (2k,6; > o)

For.n = 1, this the classical model of Cox er al. (1981). For the case of two factors, this model was
studied by Chfan and Scott (1992) and independently by Longstaff and Schwartz (1992) in a dif-
ferent but equivalent form. Their methods for deriving zero-coupon bond-option formuiae lead in
gene.ral to an n-dimensional integral of the chi-squared density. However, by the results of the
previous section, we can write these as one-dimensional integrals. Chen and Scott (1992) also treat
?ptlonls on coupon bonds. For this case, our method does not provide an improvement over their
ormula.

Since x;(t) are independent bond prices and can be written

Pr(t) = fIE, [exp (— J;T x;(u) du)] = exp (— i B(T — 0)x;(t) — a(T — t))
i1

i=1

for some functio;ls Bi(7) and a(7)(= Zx8; [y B,(s)ds) whose explicit forms are given by Cox et al.
(1981, 1985). Using the well-known Laplace transform of the no-central chi-squared distribution,

Jamshidian (1987) calculated the forward-risk-adjusted distribution of 7(¢) in the one-factor case
from which it follows that ,

T 4x,6; 4B;(T —1) 1
x(T) )i ~ xi (7[,W_—t)xi(t),za?3i(T - t),O)

Hence (using vector notation),

40 4B'(T -
108 AT) I (e gt (0 BT — 0B(s - T)afs = 7))
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Theorems 4.1 (i), (ii), (iii) are therefore applicable, providing pricing formulae for bond options,
caps on spot rate and bond-exchange options. According to Cox et al. (1981), :

x(T) |, ~ 2 4_5,91 4K,,-e'~i(T—r)xi(1) U,z(l—e_""(r")) 0
i £~ Xt 0'2 10%(1_e—n,-(T—1))a 4K,i ,

Theorem 4.1 (v) thus provides a futures pricing formula in a similar linear exponential form to
bond prices, with coefficients more explicitly provided in CIR (1981). Moreover, parts (vi) and (vii)
provide pricing formulae for an option on a zero-coupon bond futures and for the delivery option.
For the single-factor case, Carr (1987) provides more strongly a pricing formula for futures on
several deliverable coupon bonds.

At least for the single-factor case, Jamshidian (1995) has shown, that in the ‘simple square root
models’, where the coefficients are time varying but subject to K (1)0;(1) /o2 (t) being constant, in-
terest rates and log{P;(T)) are 2 distributed, with coefficients given explicitly in terms of initial
yield and volatility curves. Hence, we have similar pricing formulae for this more general class of
models. Further, in the one-factor case, the formulae extend to coupon bonds.

6. A subfamily €, of the class Xﬁ

In the square-root model, the ‘degree of freedom’ v of the chi-squared distribution can be any real
number. But, in the quadratic model, interest rates are squared norms of Gaussian variates, hence
the degree of freedom is an integer. In preparation for the quadratic model, we thus define a sub-
family of x2 with v =1. If ¥ = E(% B.X? + b;X;) + ¢, where Xj,... X, are independent normally
distributed random variables with means y; and variances V;, we write ¥ ~ Q,.(B,b,c, u, V). We
then have,

Y ~ Q,(B,b,c, 1 V) = ¥ ~ x4(1, A, 5,0)

A= (u+b/B}/V, B=4VB, a=c-}) bi/B;
=1

n
prob [¥ <y] =wn(y — 6 B.bm V), wi(zBb,u V) =xn <z+%2b?/3f; IM)
i=1

Theorem 4.1 is applicable. For example if —log(P(T)) 17~ Qu(B(T), bs(T), cs(T), pr(8), V(1))
then the bond-option-pricing formulae of part (i) apply by simply replacing Ar(?), etc., in terms
of B,(T), etc., using the above transformation. Similarly, part (i) for spot-rate caps, and parts (iv)
and (v) for options on forward and futures contracts all go through by simply applying the above
transformation. However, parts (iii) and (v) for exchange and delivery options do not apply
directly. Indeed, the assumption in (jii) that Ar(¢) is independent of s is violated. This is easily
remedied. If Y ~ Q,(B,b,c, 1, V) and Y' ~Q,(B',,¢', u, V), then, similarly to its counterpart

* Cleatly, 0,(B,b,c, 4, ¥) = u(BV, (Bu + B}V, ¢+ Zbys; + Bsf /2,0,1).
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for x2 in Theorem 2.1, we have,

E[e! —e V)] = Ele Y0, (c' e B_Bh_p OV
14+BV'l +BV

—-E[e_yl]Q,,<c'—c; B—B' b-V¥, M,_V_
1+BV'1+ BV

Thus if -log(Py(T)) H ~ Qu(Bo(T), b(T), ¢(T), ur(1), V7(1)) and similarly for -log(Py(T)),
then, by forward risk adjustment, we obtain for the exchange option immediately,

E, [exp (— LT r(u) du) (kP,(T) — n’PS,(T))+]

= kP(T)w, <cs’(T) + IOg% - L‘_‘(T); By(T) — By(T),b(T)

— b(T) pr(t) — b(T)Vr(1) Vr(o)
YT 1+ B(TVr() 1+ B(T)Vr(1)

- K,Ps’(T)wn (c:’(T) + logg —¢(T); B(T) — BS’(T))b.r(T) - b.\"(T))

pr(t) — by (T)Vr(2) Vr()
L+ B(T)Vr() "1+ Bo(T)Vr(t)

A similar formula is clear for the delivery option. For the next section it is useful to note

.-

Y~ Qn(Bv byc,Bx +a, V) = E[C—Y]

= _\~(1_BBi  ,  Bibi+aB) )
_exp< Z(§l+BiVixi+ T+ B, x;| —c—é(B,b,a, V) (6:1):

i=1

- "1
C(Bv ba a, V) = Z(EIOg(l + V,'B,') +

B,-a,? + 2b,-a,~ — V,b,z
201+ VB)

7. The quadratic interest-rate model

In the .quadratic interest-rate model, the spot interest rate is a quadratic function of a multivariate
Gaussnap state variable. By writing down the fundamental differential equation for zero-coupon
bond prices, one finds that yields and forward rates of all maturities are also quadratic functions of
the Gaussian state variable. It then follows that interest rates and logarithm of discount factors
belong to the class of distribution 2, and the results of the previous section are applicable.
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In the general formulation of the quadratic model given by Beaglehole and Tenney (1991),
r(t) = (' Q(Ox(1) + g () + £} (x(1) = (xi(0), - Xm(1)')

where Q(2) is a symmetric matrix, g(¢) is a vector, f(2) a scalar, all smooth and deterministic, and
x(¢) follows the Gaussian process

dx = (a(f) — f(1)x) dt + o(r) dz

for some smooth deterministic m-vector a(t), m by m matrix 3(¢), and m by n matrix o(r). The
fundamental partial differential equation for a contingent claim price C(x, 1) is

Ox?

In particular zero-coupon bond prices satisfy this equation, subject to the terminal condition of
unity at maturity. We can solve the resulting partial differential equation by the separation of
variable technique employed by Cox et al. (1981) for the square-root model. This results in a
system of ordinary differential equations for the coefficients. Carrying this out, we find that the
T-maturity zero-coupon bond price is given by

Pr(t) = exp(—x() Br(0)x(1) ~ br(1)'x(t) — ex(1))
where, for each 7, the matrix Br(f), vector br(r) and scalar cr(t) functions of ¢ < T satisfy

dBr/dt = B'Br + By + Bro o'Br — Q, Br(T) =0

ac ,0C 1 8 C B
5?+(a—ﬂx) ax~l—2tr(cr og)-rC=0

dbr/df - (ﬁ + O'O’IBT)’br + B'Ta +g= 0, bT(T) =0

der/dt + a'by + 4 tr (o' Bro) —4bro 'br +f =0, cr(T) =0

Because the above (backward) system of ODEs for Br(¢) is nonlinear, it may have a solution only
for ¢ near T. Nevertheless, since the right-hand side is symmetric, by (local) uniqueness, Br(t) will
also be symmetric. In general, there is no closed-form solution for this system of ODE, even when
the coeflicients are constants.

Maghsoodi (1996) has proved the surprising result that certain n-factor quadratic models
are equivalent to one-dimensional simple square-root models with integer ‘dimension’
4k(£)8(1)/o*(1) = n: the spot rates of both models will have the same probability transition
function. This holds for example when Q(z) is the identity matrix, and glty=f(t)y=a()=0.
However, if a(t) is non-zero, this quadratic model cannot be reduced to the square-root model.
For example, in the one factor case with r(f) = x(?), the spot rate r(#) will not even be a diffusion
(Markov) process if the drift parameter o({) is non-zero.

This can be seen by the following qualitative argument. Suppose x(¢) is strongly mean reverting
relative to its volatility, and has a long-term expectation of, say, 3. Then, r(t) = x(¢) is expected to
drift in the long term to (slightly more than) 9%. Suppose r{1) is currently at 4%. Because of the
large mean reversion, one would normally expect r(1) to rise sharply. But, actually, it may fall
sharply. Indeed, if x(r) = -2, then its expected direction is toward zero, which causes r(¢) to fall
towards zero, before starting to rise to 9%. The expected direction of r(?) therefore depends on the
sign of x(¢), a quantity that is not determined by the level of r(t) alone. This shows r{t) cannot be a
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Markovian process. To know the expected direction of r(¢), we have to keep a past record of
whether r(¢) has ‘bounced off’ the origin r = 0 an odd or an even number of times.

This example also illustrates an undesirable feature of the quadratic model. Although the spot
rate r() = x*(¢) never becomes negative, it can become zero. But the parameters of the square-root
model can be chosen so that its spot rate never reaches zero.

The multifactor quadratic model can be analysed in full generality, as demonstrated in El Karoui
et al. (1992). But in order to derive a more explicit and complete set of properties, we will next
specialize to ‘separable multifactor’ models.

8. Structure of the separable quadratic model

In this section we study in detail multifactor quadratic models which are essentially a sum of in-
dependent one-factor models. The analysis of these models reduces to that of the one-factor case,
thus enabling sharp results. Yet these models allow non-perfectly correlated instantaneous changes
in the yield curve, which is generally considered to be the main benefit of multifactor models.
Specifically, we assume that m = n and (1), o(r), and Q(¢) are diagonal matrices, and accordingly
change notation to denote B(¢) = (8,(1),...,8,(t)), etc. By the linear transformation X =
V0% + &i/+/Q;, without loss of generality we assume that Q;(r) = 1 and g;(r) = 0. We may
further assume that f(¢) = 0, for otherwise r(¢) simply shifts by f(T’), without changing the ana-
lysis. So, we will henceforth assume the model

r()) =1(() + ...+ x(0))

dx; = (a;(t) ~ Bi()x;) dt + 0,(2) dz;

The T-maturity zero-coupon bond price and forward rate are now of the form'®
Pr(1) = exp (— Y G Br(Ox (1) + b (0)xi(r)) - cT(t))
i=1

n

rr(0) = Y @BHOR0 + 85 (0x0) +ér(t) (erl) = 21D etc)

i=1
In the T-maturity forward-risk-adjusted measure x(r) is again Gaussian: in vector notation,
dx(1) = (alr) = *(D)br (1) — (B(1) + () Br(1)x(1)) dt + o (1) dz7 (1)

It is now clear that interest rates are distributed (2, in both the risk-neutral and the forward-risk-
adjusted measures, although we must still determine their parameters. We will first list the proper-
ties of the model in the following theorem (proved in the appendix), and then discuss their meaning
and significance. Their application to fitting the yield curve will be discussed in the next section.

'_f’For a function of two variables written as fr(1), in this paper the dot notation signifies fr(1) = 8fr(1)/T,
Jr(t) = &fr(1)/8T?, etc. Note, £.(T) = 8f,(T)/ s, etc.
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Theorem 8.1: For all 0 < ¢ < u < T < s (using vector notation) the following equations hold:

varl (7)) = ¥1(6) = =B(T) = 3L (= ~B(T) ~ 5 5plog Br () (&)
ET[x(T)] = \/Br(0x(0) + 67(0)// Br 1) (82)
e (1) = S UG (/B + V(D) (83)
i=1
DT ~ 2,(1,0,0, /Br(0)x(t) + br()/y/Br (1), V(1)) (8.4)
_log (T[T ~ Qu(BA(T),b(T), (), Br()x(t) + b7 (0)/\/Br(0), V1) (8.5)
_ B(-B0) 69
B = B V(B - Br(0)
o BB () _ BB ()BT -
B = G~ Vel0 ) - B )P (B9 — Br(0))

: by(t) = br(t) _ br(1) 3.8
bs(T) = BJ(T) BT(t) (B_‘(t) _ BT(I) BT(I)) ( )
B(T) = ()1 + Ve (DBAT)) + BTV r(0(bo(8) = br(0) = b/ \/Br () (89)
eAT) = ey(8) — ex(t) = §BAT), b(T), br()/\/Be(d, V2(0) (8.10)
AV r(1)/8t + a*(1)Br(t) =0 (8.11)
(1) = (Bu(0) 2 (Bu0B(0) — BulDBD) (= B (w) (8.12)
() = V(0) + V(O + 280)V,(0) (= V() (8.13)

2 -
B0+ 50 + 20 + 5y 0 (5,0) ~§ (2 Tog 24(0) =0, ) = 460 (819
B.r(t) 5&(‘) _ B:(T) varf[x(T)] — Vs(t) - V_,(T) (815)

EEO =G VEwam  B@ BAT)
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Moreover, if o and 3 are constants, then

V() = o’Br(1), Br(t)=Hr)(&" — 1), Br(t) = (2yh(r)e™)?

ho)=((r+ B +7+8)", v=\/2+ 8, r=T -1
If in addition « is constant, then (setting £x = v, + ... + x, for any vector x),
br(t) = ah(r)(e™ = 1)* /7, br(1) = 20k’ (7)€" (" — 1)/h(1/2)

2

1{a* o
er(t) = Zf <? - m)T - %log(Z'yh(r))

2
21
topg gy DB+ BT +0* - Y - - T)
. 1 (ah 1)\
rlt) = ZE (%%) +%”2h(7)(czv =1), r=T~1

Equations (8.1) and (8.2) provide formulae for the variance and mean of the state variable X (T)in
the T-maturity forward risk adjusted measure. Since X (T) is normally distributed, its distribution
is thus determined. Combined with the fact that r(T’) and logarithms of zero-coupon bond prices
are quadratic in X(7), their distribution is now determined as in equations (8.4) and (8.5). The
option- and futures-pricing formulae of Section 4 are thus applicable. For options on forward
bond contracts, we need the distribution of X(T) in the s-maturity forward-risk-adjusted measure,
s > T. This is provided by equation (8.15).

Equation (8.3) plays an important role in fitting the yield curve, as explained in the next section.
Eguations (8.6)~(8.10) are ‘transport equations’. These equations provide the coefficient of
dxscqunt factors and instantaneous rates at time T in terms of those at an earlier time ¢. In order
to price an option in terms of the initial yield curve data, they must be substituted in equation (8.5).
They are also useful for numerical evaluation of options on a finite difference grid.

Eqpations (8.12)—(8.14) are ‘forward’ ODEs for the coefficients of the state variable x(1). As
f:x.p.lamed in the next section, these equations are useful for constructing the process for x(t) from
initial yield curve and/or volatility data for the purpose of American option valuation. These
forward ODEs are related to the Fokker—Plank forward equation for Green’s function, and in
fact follow from the latter with the aid of (3.1), (8.1) and (8.2). Equation (8.11) is a useful ‘back-
ward’ ODE for the variance function.

:I‘he final part of the theorem provides a closed-form solution for bond prices when the coef-
ficlents of x(t) are time independent. An examination of the formulae actually reveals a disappoint-
ing feature of the quadratic model. Consider the single-factor case for simplicity, and assume that
the drift parame.ter a is positive. The problem occurs when the state variable x is in the range
—q/'y < x £ 0. Since a > 0, this may not be very likely, but it is certainly possible. When x(¢) is in
th1§ range, the formulae show that while yields of short-date bonds have an instantaneous corre-
lation of 1 with the spot interest rate r(f), yields of long-dated bonds have instantaneous
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correlation of —1 with the spot rate. In other words if the short rate moves up over a very short
period of time, then long rates of necessity move down. This is clearly an undesirable property that
is not shared by well-behaved models like the simple square-root model, or other specific models in
which r(¢) is a diffusion (Markov) process.

To see this claim, note that bond price volatilities are given by

or(t) = —o(Br(0)x(1) + br(0) = —oh(r)(€” = (™ + (1)) + ae™ — 1)/7)

This quantity is zero when x(f) = a(l — e")/y(1 + €™)). Now, given —a/vy < x < 0, define

7(x)
T(x) Ellog(‘l__l{) (x:a(;.e___))
o7 a+ X 7(1 + C'Tr(‘\))
Then, by what we have just seen the volatility of the zero-coupon bond of maturity
T* =t + 7(x(1)) is zero, when the model at time 7 is at state x(¢). Substituting the expression
for x = x(¢) from the previous equation into the one before, we easily see that for maturities
T < T*, the bond volatility is positive, and for maturities T > T " it is negative, when the model
is in state x(¢). This establishes the claim.

We also note that for fixed ¢ and T, the T-maturity zero-coupon bond price Pr(r) reaches a
maximum (over all states) at the state x(f)=a(l —e”)/(y(1+€")). At this state
dPr(1)/Pr(t) = r(1) dt, because the bond volatility is zero. But the large negative convexity should
be a concern to the holder of this bond at (or near) this state. Such anomalies persist in state
variable models of the form r(¢) = r(¢, x(¢)) where the function r(,x) is not monotone in x. But
if r(t, x) is monotone in x, then r(r) will be a diffusion process, and such a model reduces to the
usual one-factor model where r(7) serves as the state variable.

For the purpose of calculating futures prices, we need the distribution of the state variables and
bond prices in the risk-neutral measure. The following theorem provides this, as well as the
distribution of futures prices in the forward-risk-adjusted measure for valuation of options on
bond futures or the delivery option.

Theorem 8.2: For any 1 < s < 1*, (using vector notation) set

Bi(t) Eexp(— J’ B(u) du), a,(1) EJ:a(u),B,(u) du, v(1) EJ:az(u)ﬂf(u)du

(B,-(s)a(1) + b,- () B:(1)
1+ B (s)us(0)

Bl'("')ﬂf(’)
1+ B (s)vs(t)

BS,I'(t) = y bs,l‘(’) =

cx.l'(’) = C,-(S) + E(B,-(S), b,'(S), as(t)1 U:(t))
Then, for all 0 < t < T < s < 1*, the following equations hold:

E,[x(s)} = B:(6)x(t) + a,(1), var[x(s)] = vs(¢) (8.16)
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—log Pi-(s) |c ~ Qu(By+ (), bs- (5), ¢+ (s), B(£)x(2) + a5(1), (1)) (8.17)

n

Fypo(8) = E[Py(s)] = exp [— DG Bl (X (1) + bl (i) - cs,l-(t)]

i=1

~log Fo o (T) 7 ~ @ (Bs.l'(T)1b:,t‘(T)acs,r'(T)v Br(0)x(1) + br(1)// Br(0), Vr(l))

B:,I‘ (t) b
B3(1) — vr(1) By o (1)

bs,l‘ (t)
Bx,l' (t)

B,,(T) = (1) = Bs,,-(r)( Br(t) - ar(’))

c.r,l‘(T) = Cs,t' (t) - E(BJ,I‘(T)vbs,l‘(T)vaT(')v UT(t))
Moreover, if a, £, and o are constants, then

Bi(t) =P g () = a(l —e )8, v (1) = d*(1 — e D) /28

9. Fitting initial yield and volatility curves and preference-free
evaluation

Consider first the one-factor case. Assume that at the initial time ¢ (e.g. ¢ = 0) the yield curve is
given, that is Pr(7) (and rr(2)) is given for all T > t. We know x(f) = £(2r(1))"/, but we do not
know its sign. Assume its sign is also given, say positive. We first consider the problem of fitting
only the initial curve. For this it is natural to assume that both §(x) and o(u) are given for allu > ¢,
and solve for a{u) for all u, or solve directly for the coefficients of the discount function.

So suppose B(u) and o(u) are given for all > 1. A natural case is when they are constants. In
that case we have closed-form solutions for By(T), B,(T) and Vr(¢) from the second part of
Theorem 8.1. If calibration to caps or swaptions is desired, S(u) or o(x) may be chosen time
dependent. In that case, we numerically solve (in linear time) the single ODE (8.14) (or solve
ODE (8.13) and then use (8.1)). Then By (f), Br(¢) and V¢(z) are determined (at least for T near
7). Once these quantities are found, either in closed form or by solving an ODE as the case may be,
then using equation (8.3) for é7(f), we write

re(8) = § Br(x*(0) + br()x(t) + §1(6r(0)*/Br(1) + V(1))

With the initial curve rp(f) at time ¢ given, this is a quadratic equation for br(f). Its (largest)
solution is given by

br(f) = —Br(0)x(1) + \/ Br(n)(2rr(0) - V(1) @rr(9) > Vr(0)) 6-1)

This, together with equation (8.12), furnishes an algebraic formula for the unknown e(x). This can
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then be used to build a finite difference grid for options that require numerical valuation. We note
that for the solution in (9.1) to exist, we must have Vi (#) < 2ry(z). Otherwise, a real-valued
solution does not exist, that is, the yield curve does not fit. Also note that a positive solution
obtains if and only if 2rr(r) > Br(t)x*(t) + V(o).

Once by (r) is determined from (9.1), the distribution of r(T') is available from (8.4), so spot rate
caps are priced by Theorem 4.1 (ii). Further, from b,(t), we recover ¢,(f) from (8.3) and with it
¢4(1)- So, we have all the bond coefficients (B,(t), etc.), for the initial time ¢ are now available.
Moreover, equations (8.6)—(8.10) now algebraically provide them (B,(T), etc.) for time T. In
particular we now have the distribution of P(T) from (8.5), with which to analytically evaluate
the various bond options in Theorem 4.1.

We have thus seen that if 8(u) and o(u) are constant, the fitting of the curve is entirely analytic
via closed form algebraic formula, and when they are not constant, only a single ODE need be
numerically solved. The resulting valuation of contingent claims is preference free, that is, it is in
terms of the initial yield curve and does not require or use any specification of the market price of
risk.

Suppose next that both the initial forward-rate curve ry(f) and initial forward-rate volatility
curve o7(f) = Bor(r)/8T are given at the initial time r. Now, o7(1) = (Br(t)x(t) + br{0))o(?).
Comparison with (9.1) gives

O ..
620 = (Z) = Br(0(arr(0) = V(o) = Br0(B(T) + 201(0) + 250 ©2)
(Note, 67(¢) is known because o(f) = 6,(¢)/x(¢) is known.) Solving for Br(1), we obtain

T s
Br(0) = (Pr{0 () (1 42 m;%;l—gm—z) (30 = exp(- [ 0 au))

Moreover, substituting for 5(T) from (9.2) into (8.14) results in
BB — 26B + (-2 + 4 + A(T)B + (6 - 4r8)B+ 8 =0, r=rr(t), B= Br(1), etc

Now, there are two possibilities: either 8(u) is given or o(u) is given. Assume first that S(u) is given
(e.g. a constant). Then Br(f) can be numerically computed linearly in time from the equation
before the last equation above (first compute and store B,(f) for all t <u < T), and br(t) is
subsequently obtained from (9.1). Moreover, o*(u) is recovered from (8.13) (and will be positive
near ¢ by continuity.) Option evaluation now proceeds as before, and it will be preference free if the
market price of risk is deterministic.

More interestingly, if o(x) is given, then the above equation is a first order ODE for By(f) (as a
function of T), which, subject to B,(t) = 1, can be numerically solved for all T (near ¢) in linear
time. Then B(u) is recovered from (9.2). Now, evaluation is preference free whatever the market
price of risk, for the latter does not affect o(u) in the diffusion term.

Thus, to fit both the yield and volatility curves, a single ODE needs be solved numerically. It is
interesting to contrast this with simple square-root models in Jamshidian (1995). There, yield and
volatility curves are simultaneously fitted analytically, but to fit only the yield curve, an ODE must
be solved numerically. In this way, quadratic and simple square-root models exhibit opposite

behaviour.
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As preparation for the multifactor case, given the model parameters a(u), B(u), and o(u),
consider the problem of determining ry(¢), Pr(s), By(t), etc., at a fixed initial time ¢ for ‘all’
(i.e. many) T. If they are constants, of course we use the closed-form solutions in the second part
of Theorem 7.1. If not, we could use the backward ODEs which follow from the fundamental PDE.
But then, for each T, we must solve one ODE. Instead, we should numerically solve once and for
all the forward ODE (8.14) (or (8.13)) for B,,(t) for all u, and then solve the forward ODE (8.12) for
Eu(t) for all #, both linearly in time. From (8.3), é,(r) is now also determined so that we have rr(t)
in linear time. As a bonus, we integrate these to find in linear time B,(1), b,(¢) and ¢,(¢), and then
use the forward algebraic equations (8.6)—(8.10) to find B,(T), etc. conveniently for any s and T.

Now consider the multifactor case n > 2. Say, we are given ry(r) at the initial time 7 and the
vectors 3(u) and o(u) (perhaps constants). There are now infinitely many compatible quadratic
models because we have n degrees of freedom o;(u), ..-»0(u) but only one set of data to fit.
One way to fix a unique choice is to take, say, a, (u),...,a,(u) as given. In this case, we consider
the one-factor models corresponding to i = 2, .. ,n, whose a, 8, and o coefficients are given, and
calculate the corresponding forward-rate curve for each, denoted (1), as described in the previous
paragraph. Then, we set ry(f) = re(8)—r2 (0~ .. .~7'7(1), and find, as explained above, a one-factor
model, together with its a, (2), bL.(1), etc., that fits (1), B1(u), and (u). The resulting multifactor
model now fits the original r7(r), and we have its appropriate coefficients. To additionally fit a
volatility curve, we solve for B}-(¢) in terms of (1), 0%(1), and either Bi(u) or a,(u) as before in
the one-factor case. Another way to deal with the redundancy is to break ry(¢) arbitrarily into n
components ri(7), ... (D), (g () = rr(#)/n) and fit a one-factor model through each.

When the numbser of factors is greater than two, it may be preferable to choose a constant coef-
ficient model. In this case there are sufficiently many coefficients available to calibrate the model to
a handful of key rates. Using the closed-form solutions for bond prices as given in Theorem 8.1, the
multidimensional numerical root search should be fast.

10. Conclusion

The quadratic model is in many ways similar to the class of simple square-root models of Jamshi-
dian (1995). In both models interest rates are chi-squared distributed, bond prices can be solved by
the Riccati equations, closed-form solutions are available for futures and options on zero-coupon
bonds, and above all, the yield curve can be fitted analytically.

In our opinion, simple square-root models are better, however. One reason is that, at least for
the single-factor case, the spot rate r(r) serves as the state variable in simple square-root models,
and zero-coupon bond prices are decreasing prices of this state variable. One can consequently
evaluate a European option on a coupon bond analytically as a linear combination of European
options on zero-coupon bonds. But for the quadratic model, bond prices are a non-monotone
function of the state variable, and this decomposition does not seem possible.

Another reason is the anomalous behaviour of the quadratic model when the state variable is
negative. In Section 7 we saw that the spot rate can reach and bounce off zero, and given enough
time this could happen several times. More seriously, we saw in Section 8 that for a certain range of
parameters, long-term rates will of necessity be negatively correlated with short-term rates. These
and other related problems are not as severe as the negative interest-rates associated with Gaussian
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interest-rate models. But, compared to simple square-root models, which do not suffer from any
such anomalies, the quadratic interest rate-model seems to have less to offer.
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Appendix A

Theorem 2.1 is a consequence of the following general result which leads to similar explicit
formulae for any distribution whose characteristic function has an elementary form.

Theorem 11.1: Let X be a (real) random variable and denote its probability distribution and
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density functions respectively by P(x) and p(x) = P'(x) and its characteristic function by #(&) =
Elexp(i£X)}, i = vV—1,£ € R. Assume $(€) is smooth and |¢(£)| < C/(1+ |€))° for some positive
constants C and €. Then, for all x € R!!

P =54 g, €00 e o= vy (a1)
E[(X - x),) = E[X] - x) + - [ - cerpg — eergien % (A2)
+ 2 2 0 EZ

Proof: Let H(x) denote the Heaviside function, i.e. H (x) =1if x >0, H(x) = 0 if x < 0. For any
ordinary or generalized function g, denote its Fourier transform by g. Then, by the Fourier
inversion formula, p(x) = $(x)/2x. Hence, denoting the ‘duality between a generalized function
u and a test function ¢ by (v, ¢}, we have,

o0

x 1 . Lo -
P = [ 01 dy=ot [ Hee= i) v = L e e e
—% T ) oo 2T
Now, it is well known that as a generalized function H is given by'?
. .d
H(§) = n6(¢) - '&103 1€l
where § is the Dirac delta function. Thus, for any test function ¢,'?
(H©0(0) =m0+ 10glege) de = mpl0) + 1 [ LE-E) g
Equation (A1) follows. Next, since y, = yH (), we have, p,(€) = i dH/d¢. Hence,
LN LN = L7 pepy emixe
B =) =5 [ =080 & = 1 (S A, 010))
Now, for any test function ¢,

(=€) - (6

d Y / = —m / i
(&100©) = ~(A6.60) = ~rel) -1 "ECLL o
= —m(0) - 'J:Q 2¢(0) — wg) —(=§) de
Equation (A2) follows because if ((¢) = exp(—itx)¢(€), then ©'(0) = i(E[X] - x). (] '

! Note that both integrands are integrable (in fact smooth) at £ = 0, and they are integrable at infinity by the assumption on '
the growth of ¢(¢). ;
12 See, e.g. Hormander (1983), Example 7.1.17. Briefly, a generalized function u(x) is a continuous linear functional on
appropriate spaces of ‘test functions’ (x). The largest domain that u(x) continuously extends to depends on its degree (of
non-differentiability) and its growth. By definition, (W, 0) = ~(u,¢'), (@,9) = (4,3), and for a function f (x),
(Sfu, ) = (u,f¢). I u(x) is an integrable function, then (0} = [22 u(x)p(x)dx.

13 The second integral here is known as a principal value integral. It is obtained by writing the first integral as IV Pt
integrating by parts, and letting ¢ approach zero. The similar integral below is another principal value integral and is
obtained similarly.
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Remark 11.1: Given a scalar 8, under a slightly stronger assumption, one shows similarly,

X _ _ 1 Sl :
[P0 = i) L [t ) - g 1y 6
oo 27i Jo 3
Differentiating with respect to 3, at 8 = 0, and combining with (A1) gives again (A2).

Proof of Theorem 2.1: Apply Theorem 11.1 to the random variable Y-qa. Then,
#(€) = Wa(v, A, —i£B,0), where the principal branch of the logarithm is taken, i.e.

—g < Im(log (1 + iy)) = arctan ( y) <75r

Now, calculating respectively the imaginary part of the integrand in (A1) and the real part of the
integrand in (A2) gives respectively the first and the second equations in Theorem 2.1. The third
equation in Theorem 2.1 is a special case of the fourth with B’ =0, and the fifth equation follows
from the fourth since min(a,b) = a-(a-b), and 1 - x2(y,v, A, f) = X2(=»,v,A,-B). As for the
fourth equation, we have )

e —e7),] = L(f(x; B,0) —f(x; ', o)) dx (A3)

n n
fxB0) = [Tep(xin,)), @= {x €R":D (G- B)x<a- a'}
=t j=1
where p(x; v, ) denotes the non-central x* density function, a property of which yields
n A
. — -Y .
ses8,.0) = £ T+ 290001+ 280550,

Inserting in (A3), changing variables to x' = (1 + 2B)x, and doing the same for f (x;8',a) now
yields the desired resuit.

Remark 11.2: The third, fourth and fifth equations in Theorem 2.1 can also be derived from the
general equation in Remark 9.1 and a change of variable.

Proof of Theorem 8.1: Taking 8/8T of both sides of the backward ODE for By(¢), we obtain

d .
3;08(Br(1)) = 2(B(1) + Uz(f)Br(t))
Taking 3/8T of both sides gives (8.11). Equation (A4) also implies

PO, = 50+ 260)

Hence, V(1) = 0. Equation (A4) (using B(T) = 1) also gives

exp (—z [[ 860 + 2820 du) = Br(5)

(A4)

d d . .
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Using this and the process for x(¢) in the T-maturity forward-risk-adjusted measure, we obtain
T
varl [x(T)] = I (5)Br(s) ds
t
By (8.11) and the fact that V,(r) = 0, equation (8.1) now follows. Next,

D_GBHO% (0 + {(0)x(0) + ér(0) = rr(r) = ETIHT)] = > ((ET (D)) + V(1)

7= =
On the other hand we know E” [x;(T)] is linear in x;(f). Setting powers of x;(r) in the above
equation equal, we obtain (8.2) and (8.3). As a bonus we also obtain

b _ [ (@t ~ b/ Brte0

This also follows directly from the ODE for by(r) and (A4). Indeed, more generally,
I;s(t) _ b.\‘(T) - JT "

2L = | (au) - by(w)
Bsr) B@ 1T

from which the more general equation (8.15) follows. Equations (8.4) and (8.5) are immediate
consequences of (8.1) and (8.2). To derive (8.6)—(8.10), we use forward risk adjustment, namely
equation (3.2). Indeed, the right-hand side of (3.2) can be written as a quadratic function of x(f)
using (6.1). Setting powers of x of both sides of (3.2) equal and rearranging gives (8.6), (8.8) and
(8.10). Equations (8.7) and (8.9) follow by differentiating respectively (8.6) and (8.8) and
rearranging. Equation (8.14) obtains by substituting the definition of V;(¢) in (8.13). We give
two derivations for (8.12) and (8.13). Using (8.11) twice,

B,(u)
E,(—T_) du

g(f/n(t) +Vi(0) + 2BV (1) = —a*()Br(t) — 2> () Br(0))(Vr (1) + Br(1) = 0

where the last equality used the definition of Vr(¢). In addition, using (8.11) again,

. . '
0=2¥i0 =0+ 220 v - ) .
Hence equation (8.13) is valid at t+=u, and since we just showed that its right-hand side is
independent of ¢, equation (8.13) is valid everywhere. Equation (8.12) follows by a similar '
argument. Alternatively, we use the following argument. In general, let u(¢) denote the risk-neutral ’
drift of r(s). Taking total derivative of the equation r(t) = r(t), we can easily show that
u(t) = Orp(8)/8T|r-,. In the quadratic model, using Ito’s lemma, this yields,

i(iﬁf(t)Xf(') +b7(0%;(1)) + (1) = #(1) = p(e)
j=1

= S b (e () — B(0x (1) + 302 ()
=
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Setting powers of x equal, we obtain:
n
B(t) = ~1B,(1), a(t) = b,(1), Y ok (1) = 26,(1)
j=1

(These also follow from the backward ODEs.) Now, differentiating (8.9) we obtain:

a(u) = b,(u) = (B,(1)) Hbu(0) + 28,()(V, (1) + B(w))]

which simplifies to (8.12). Differentiating (8.7) gives similarly (the second derivation of) (8.13).
(Other derivations of (8.12) and (8.13) include using the Fokker—Plank forward equation or the
equation 9rr(1)/0T = ET [(T)] — var[ [r( T)].) Finally, the correctness of the formulae for the
constant coefficient case can be verified directly by substituting into the backward ODEs, although
the above general results do provide shortcuts.

Proof of. Theorem 8.2: Equation (8.16) is a known property of Gaussian processes. Equation (8. 17)
is now lqlmediate. The futures-pricing formula now follows from (8.17) and (6.1). The next
equation is now immediate from (8.16), (8.1) and (8.2). The following three equations follow by
writing the right-hand side of the equation F (1) = E/[F,,-(T)], with the aid of (8.16) and (6.1), as
a quadratic function of x(#), then setting powers of x equal to those of the left-hand side, and
rearranging the results. The equations for the constant coefficient case are clear.
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